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Abstract. In this paper we analyse the frequency at which vulnerabil-
ities are exploited in the wild by relying on data collected worldwide
by Symantec’s sensors. Our analysis comprises 374 exploited vulnerabil-
ities for a total of 75.7 Million recorded attacks spanning three years
(2009-2012). We find that for some software as little as 5% of exploited
vulnerabilities is responsible for about 95% of the attacks against that
platform. This strongly skewed distribution is consistent for all consid-
ered software categories, for which a general take-away is that less than
10% of vulnerabilities account for more than 90% of the attacks (with
the exception of pre-2009 Java vulnerabilities). Following these findings,
we hypothesise vulnerability exploitation may follow a Power Law dis-
tribution. Rigorous hypothesis testing results in neither accepting nor
rejecting the Power Law Hypothesis, for which further data collection
from the security community may be needed. Finally, we present and
discuss the Law of the Work-Averse Attacker as a possible explanation
for the heavy-tailed distributions we find in the data, and present exam-
ples of its effects for Apple Quicktime and Microsoft Internet Explorer
vulnerabilities.

1 Introduction

Many natural phenomena have been observed to follow heavy-tailed distribu-
tions: some notable examples are the frequency distribution of words in a lan-
guage, the density of metropolitan areas, and the topology of the Internet.
Heavy-tailed phenomena significantly differ from ‘usual’ phenomena that can
be easily described by a few point estimations of the distribution. For example,
one may consider life-expectancy in a particular country as a quantity that varies
only little with respect to the average. In this sense, the average and the standard
deviation of the distribution are enough to ‘give an idea’ of how the distribution
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looks like. For heavy-tailed distributions this does not necessarily hold. For ex-
ample, if one considers GDP worldwide, the infamous Pareto law kicks in (also
known as the 80-20 rule): 20% of the world population owns 80% of the wealth.
In this case, the average income does not provide any real indication of how the
distribution looks like, as the top 20% of the population is orders of magnitude
richer than the remaining 80%. These distributions are often interesting as they
are typically generated by complex phenomena lying behind the observation.

In this paper we provide clear evidence that vulnerability exploitation is
described by a heavy-tailed distribution and hypothesise that the distribution
may follow a Power Law model. We compare our Power Law hypothesis with
two additional candidate models for the data: a Log-Normal hypothesis and an
Exponential hypothesis. We proceed by rigorously comparing each generating
model against the data, following the methodology described in [8]. We find
that the negative exponential distribution hypothesis is ruled out, and that both
the power law and the log-normal distribution can be suitable models for the
data. These results are in line with those of previous research on malware arrival
timings [15], and point toward more research to further investigate the process
that generates the observed data.

The results presented in this paper have three main implications:

1. Vulnerability exploitation may be described by laws similar to those followed
by natural phenomena (like earthquakes) and self-organizing structures (like
cities). In this sense, much in the same way as most earthquakes do not rep-
resent a threat for the population, most vulnerabilities may carry negligible
risk. This indicates that the classical approach ‘I have a vulnerability’ → ‘I
must fix it’ may be a largely disproportionate reaction to the real threat. An
equivalent to this would be to completely evacuate an area typically affected
by earthquakes even if the almost totality of earthquakes does not represent
a threat for the population.

2. Commonly-used, industry standard definitions of vulnerability risk based
on a single number (e.g. scores assigned by security-testing tools) may be
incapable of describing the distribution of attacks: a point estimate (a score
or an average) is not enough to describe the phenomena and may lead to
substantial overspending / misallocation of resources as most events may be
orders of magnitude away from the point estimate.

3. A deeper understanding of the attack-generating process may be needed to
explain the clear effect we show in the data. In Section 7 we propose the
Law of the Work-Averse Attacker as a first, informal attempt to explain the
heavy-tail effect we observe.

The paper continues as follows: Section 2 introduces the dataset used for the
analysis. Section 3 presents prima facie evidence of the heavy-tailed distribution
of attacks. The paper continues by introducing the models considered for the
data (Section 4) and by presenting the methodology and its limitations (Section
5). Results are presented in Section 6. We then discuss this work’s implications
and present a first attempt to explain the observed effect (Section 7). Related
work is discussed in Section 8. Finally, Section 9 concludes the paper.



Table 1. Categories for vulnerability classification and respective number of vulnera-
bilities and attacks recorded in WINE.

Category Sample of Software names No. Vulns. Attacks (Millions)

PLUGIN Acrobat reader, Flash Player 86 24.75
PROD Microsoft Office, Eudora 146 3.16
WINDOWS Windows XP, Vista 87 47.3
BROWSER Internet Explorer, Firefox 55 0.55

Tot 374 75.76

2 Data collection

Symantec runs a data sharing program, the Worldwide Intelligence Network
Environment, or WINE in short1. The intrusion-prevention telemetry dataset
within WINE provides information about network-based attacks detected by
Symantec’s products. WINE is indexed by attack signatures IDs, unique identi-
fiers for an attack detected by the firm’s security solutions, which can be linked
to the affected CVE, if any, through Symantec’s Security Response2 dataset.
Further details on the collection process are available in [3]. This experiment’s
data is referenced and available for sharing at Symantec Research Labs under
the WINE Experiment ID WINE-2012-008.

We take additional precautions in handling the data to consider for the fact
that the prevalence of an attack may depend on the affected software’s expo-
sure to attacks. For example, browsers may be mainly exposed to web attacks,
while productivity software like MS Outlook may be targeted more often through
social engineering and malicious email attachments. We inspected WINE’s vul-
nerabilities and grouped them in eight software categories: Browser, Plugins,
Windows, Productivity, Other Operating Systems, Server, Business Software,
Development Software. Because WINE consists largely of data from Symantec’s
consumer security products, we may have a self-selection problem in which cer-
tain software categories are not well represented in our sample. We therefore
limit our analysis to the first four categories, for which we consider our sample
to be representative of exploits in the wild: BROWSER, PLUGIN, WINDOWS
and PROD(uctivity). A more detailed discussion on this rationale is given in [5,
3]. Our analysis comprises 374 vulnerabilities and 75.7 Million attacks recorded
from July 2009 to December 2012. Table 1 reports the identified categories and
the number of respective vulnerabilities in WINE.

3 The heavy tails of vulnerability exploitation

To visualize the heavy tail distribution effect, we report in Figure 1 the his-
togram distribution of the (logarithmic) attack volumes for each vulnerability
in the category (top row) and the respective Lorentz curve distribution (bottom

1 https://www.symantec.com/about/profile/universityresearch/sharing.jsp
2 https://www.symantec.com/security_response/
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Fig. 1. Top row: histogram distribution of logarithmic exploitation volumes. Bottom
row: Lorentz curves for exploitation volumes in the different categories. p % of the
vulnerabilities are responsible for L(p)% of the attacks.

row). The histogram distribution clearly shows that (PLUGIN being an excep-
tion we further investigate in Section 6) for WINDOWS, PROD and BROWSER
the frequency of vulnerabilities with x attacks is inversely proportional to the
logarithm of x. In other words, a (very) small fraction of vulnerabilities is respon-
sible for orders of magnitude more attacks than the remaining vulnerabilities.

A clear way to visualize this is through a Lorentz curve. A Lorentz curve
describes the p percentage of the population (of vulnerabilities) that are respon-
sible for the L(p) percent of attacks. The diagonal represents an ‘equilibrium
state’ where each vulnerability is responsible for the same volume of attacks.
The further away the two curves are, the higher the ‘disparity’ in the distri-
bution of attacks per vulnerability. As depicted in Figure 1, for WINDOWS,
PROD and BROWSER the two curves are very markedly apart, indicating that
the great majority of vulnerabilities are responsible for only a negligible fraction
of the risk in the wild. Table 2 reports the distribution of attacks recorded in
the wild per vulnerability. We report the top 20, 10 and 5 percent of vulnera-
bilities and the percentage of attacks in the wild they are responsible for. The
most extreme results are obtained for WINDOWS and PROD, for which the
top 5% vulnerabilities carry more than 90% of the attacks and the top 10% the
almost totality. ‘Milder’ results are obtained for BROWSER: the top 10% carries
90% of the attacks, but the top 5% carries ‘only’ 68%, meaning that among the
top 10% vulnerabilities attacks are distributed more equally than in other cate-
gories. The less extreme result is obtained for PLUGIN, where the distribution
of exploitation attempts seems more equally distributed among vulnerabilities.



Table 2. p% of vulnerabilities responsible for L(p)% of attacks, reported by software
category.

Category Top p% vulns. L(p)% of attacks

20% 99.6%
WINDOWS 10% 96.5%

5% 91.3%

20% 99.5%
PROD 10% 98.3%

5% 94.4%

20% 97.1%
BROWSER 10% 91.3%

5% 68.2%

20% 46.9%
PLUGIN 10% 31%

5% 24%

With this last exception, we observe that a general rule for vulnerability
exploitation is that, within any software category, less than 10% of attacked
vulnerabilities are responsible for more than 90% of the attacks.

4 Possible models for the data

In general, when looking at empirical data it is often difficult to find a perfect
fit for a specific distribution. The most cautious way to proceed in this case is to
compare different hypotheses against the data. In the heavy-tailed case, models
commonly considered as candidates for the data are the Power Law distribution,
the Log-Normal distribution, and the Exponential distribution [20].

4.1 Power Law distribution

A power-law distribution describes a phenomenon whereby the probability of
observing an event of size x is proportional to a power of x. Many natural
phenomena are known to follow power-law distributions. Earthquakes are a clear
example: the probability of observing an earthquake of magnitude x rapidly
decreases with the destructiveness of the earthquake3 [20]. In general, a power
law is expressed as:

p(x) ∼ x−α (1)

where x is the measured quantity and α is a scaling factor of the distribution.
It is easy to see that, if one applies the logarithm on both sides of the equation,
one ends up with an equation form of the type ln(p(x)) = −αln(x) + c which

3 ‘Destructiveness’ is expressed by measure of the Richter scale which represents the
base 10 logarithm of the maximum amplitude of a wave as detected by a seismograph.



is a straight line with (negative) slope α and intercept c. On a log-log plot a
distribution following a power law would therefore follow a straight line.

As to the scaling parameter α, most power-law distributions found in Nature
are in the range 2 ≤ α ≤ 3 [8]. When describing a power law phenomenon
the parameter α has some interesting properties attached to it. By calculating
the second and third momentum of the normalized power law distribution it is
possible to see that depending on the value assumed by α the distribution may
have infinite mean (α < 2) and infinite variance / standard deviation (α < 3).
The interested reader can refer to [20] for further details.

In practical terms, a distribution with infinite mean and variance is a distri-
bution that can not be described by point estimates.

4.2 Log-normal distribution

Log-normal distributions can be thought as emerging from a multiplicative effect.
[18] suggests this is for example how one can model biological organisms’ growth
in weight: as a percentage C of the current weight Wt, such as Wt+1 = (C ×
Wt) +Wt. This generates a rapidly growing distribution. If growth in each step
of the process is randomly distributed and has finite mean and variance, than
because of the central limit theorem one ends up with a normal distribution
N(σ, µ) defined in the logarithm of the measure. The function form of a log-
normal distribution can therefore be derived from a normal distribution. For
further details we refer the reader to [18].

A log-normal distribution has always finite mean and variance, which are
therefore more meaningful to consider than in the general power law case.

4.3 Exponential distribution

An exponential distribution is often used to describe the probability distribution
of the distance between independent events that arrive (on average) at a constant
rate. A negative exponential is often a less good alternative model to a power
law than a log-normal distribution is [8], but we still consider it here for the sake
of completeness.

5 Methodology

The central hypothesis around which we build our analysis is:

Hypothesis 1 Vulnerability exploitation follows a Power Law distribution.

Following the methodology indicated in [8], we: 1) estimate the parameters
for the hypothesised Power Law; 2) Test the suitability of the Power Law model
for the data; 3) Compare the Power Law model with alternative possible expla-
nations (i.e. log-normal and exponential)4.

4 We use the statistical tool R and the PoweRlaw package [26, 13]. The scripts are
available at https://securitylab.disi.unitn.it/doku.php?id=software



Parameter Estimation. Empirical data is often noisy; in particular when
fitting a power law to it, one may find that the data follows a power law only
above a certain threshold xmin. This is intuitive as in the lower tail small vari-
ations in the magnitude of the observation would cause significant noise in the
fit. It is generally observed that data points below xmin are often better mod-
elled by distributions other than a power law [18]. Exploiting this observation,
Clauset et al. [9] suggest to estimate xmin by selecting the cutoff that minimizes
the distance between the fitted Power Law distribution and the probability dis-
tribution of the data. The distance is calculated as the Kolmogorov-Smirnov
(KS) statistic, which simply returns the maximum absolute distance between
two curves. This way one obtains the xmin cutoff that provides the best fit for
all x > xmin. The scaling parameter α is estimated as the parameter that max-
imizes the likelihood of observing the data given a certain value of α (maximum
likelihood estimation).

Hypothesis testing. We now need to estimate how likely the Power Law
model is for the data. Bootstrapping [11] provides a powerful method to verify
the likelihood of the Power Law hypothesis. For each separate data sample DS
(e.g. BROWSER) of length n, a bootstrapped sample is obtained from the data
by randomly choosing with replacement n vulnerabilities from DS. We create
10 thousand bootstrapped samples for each DS. For each bootstrapped sample
we then compute the parameter estimation and the relative KS statistic. Then,
a p-value for the power law hypothesis is obtained by computing the fraction
of KS statistics KS′ obtained from the sample that are above the KS statistic
seen from the data. The closest the p-value is to the unity, the greatest the
evidence for the Power Law Hypothesis5. We reject the power-law hypothesis if
the resulting p-value is below p < 0.1. As noted by Clauset et al., a very good fit
(p > 0.9) is very unlikely to be found in field data such as ours. We will consider
the Power Law model to be not unreasonable for p > 0.1. This threshold is the
same indicated in [8].

Comparison with other models. The p-value alone may not be a good-
enough indicator of the models’ suitability, especially when the data is noisy.
Therefore, to more rigorously evaluate the Power Law Hypothesis we compare
it with the alternative distributions defined in Section 4.

To compare the models we perform a log likelihood test. The idea behind a log
likelihood test is to compute the likelihood of observing the data assuming two
different originating models: the model with the highest likelihood is, intuitively,
the preferred one. A way to see this is to compute the difference in the log
likelihoods for the two distributions, R: if R is close to zero, the data has the
same likelihood under the two hypotheses; if R is far from zero, the sign of the
difference indicates which model is the most suitable for the data. We compute
R as R = log(L(PowerLaw))− log(L(Alternative)) where L() is the likelihood
function; therefore, a positive sign favours the Power Law hypothesis; a negative
sign favours the Alternative.

5 An alternative approach would be to measure the fraction of estimated α′ from the
bootstrapped sample higher than the α for the original data.



Table 3. Power laws’ parameters. The reported α is the median resulting from the
bootstrapped process. Significance is reported in bold for p > 0.1.

Category xmin nx≥xmin α 95% Con. In. p-value

WINDOWS 20 64 1.31 1.22 - 1.64 0.44
BROWSER 1010 19 1.60 1.20 - 2.27 0.52
PLUGIN 118 80 1.35 1.26 - 2.14 0.00
PROD 267 49 1.50 1.34 - 1.78 0.84

The significance of the difference between the two models is given by the
size of |R|. For values of R close to zero, the sign does not indicate a significant
difference between the two models. We use the Vuong test [29] to evaluate the
statistical significance of the sign. If the resulting p-value is below 0.1 (p < 0.1)
we consider the difference to be significant. If not, the two models (Power Law
and the Alternative) are effectively indistinguishable with respect to the data.

Limitations. Fitting models to the data asks for as many data points as
possible. [8] shows that, indicatively, a distribution with at least 100 points
is desirable to make sound conclusions. However, a general estimation of this
threshold valid for any distribution is hard to make. Unfortunately exploitation
data, especially collected on a significant scale (i.e. worldwide), is difficult to
find. No precaution can completely rule out the “overfitting” problem caused by
too few data points [8]. In our experiment the worst case is that of BROWSER
vulnerabilities, for which we refrain from making any definitive conclusion. For
WINDOWS, PLUGIN and PROD we will be slightly bolder. To the best of our
knowledge, WINE is the most comprehensive dataset of records of attacks in the
wild that is publicly available.

Another limitation is represented by the data collection itself and, indirectly,
by the type of software and attacks our results can be considered representa-
tive of. The WINE dataset reports mostly attacks recorded against ‘consumer
platforms’, unlikely to receive targeted or 0-days attacks [6]. Our results and
conclusions are therefore relevant only for untargeted attack scenarios, and are
not representative of ‘black swan’ attacks for which a dedicated attacker aims at
a particular target. This is obvious as a single targeted attack is for us negligible,
as it would be in the lower left hand of the Lorentz curves in Figure 1.

6 The power law hypothesis

Parameter estimation and Hypothesis Testing. Figure 2 reports the log-
log plot and a linear fit for the four categories. Attack volumes are reported on
the x-axis; the y-axis reports the probability of observing an attack volume equal
to x. It is easy to see that for all categories, with the exception of PLUGIN, the
data shows a linear trend, which is expected with a Power Law distribution [8,
18]. Table 3 reports the model parameters for each category and the p-value
for the power law fit. The estimation is done for values x ≥ xmin. This means
that the datasets are further truncated and the estimation is limited to the
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Fig. 2. Log-log plot of vulnerability exploitation by vulnerability rank

datapoints left. These are reported in the table under the column nx≥xmin
. The

data points left still allow for an (albeit cautious) discussion. The BROWSER
case is critical, as only 19 vulnerabilities are available for the model fitting. For
this category the resulting p-value (p = 0.52) is higher than the significance
threshold of p > 0.1 identified by [8], but we refrain from considering this as
evidence for the Power Law case. A more significant discussion can be made for
the remaining categories. In particular, the Power Law model could be a good
candidate to explain the WINDOWS and PROD exploitation distributions. For
PLUGIN as a whole, instead, the hypothesis is ruled out completely. We will
analyse this exception in more detail later in this Section. The α parameter lies
in the 1.2-2.2 region for all software categories, indicating a mildly steep to steep
curve.

We do not reject Hyp. 1 in the cases of WINDOWS, BROWSER and PROD
vulnerabilities. We reject Hyp. 1 for PLUGIN.

Comparison with other models. In Table 4 we report the results of the
log likelihood comparison between Hyp. 1 and the alternative models. A nega-
tive sign indicates that the evidence points toward the alternative hypothesis;
a positive sign supports the Power Law model. We also report the two-tailed
Vuong’s significance test; the result is considered significant if the p-value is
below 0.1. The log likelihood ratio test for the exponential distribution returns
“Not a number” as the fit between the estimated curve and the data is so poor
it tends to zero, and the logarithm goes to infinity. The log-normal distribution
results slightly favored in the likelihood ratio test for BROWSER and PROD
vulnerabilities, but the small distance from 0 does not make for a solid margin,



Table 4. Difference in likelihood of alternative models. ∞ indicates a fit so poor that
the log likelihood for the alternative goes to infinity. We report significant conclusions
for p ≤ 0.1 in bold.

Category Alternative Likelihood difference Favoured Model

WINDOWS Log-normal -1.49 Alternative
Exponential ∞ Power Law

BROWSER Log-normal -0.29 Alternative
Exponential 2.18 Power Law

PLUGIN Log-normal -5.39 Alternative
Exponential ∞ Power Law

PROD Log-normal -0.34 Alternative
Exponential ∞ Power Law
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Fig. 3. Log-log plot of volume of exploits in the wild for Microsoft Office (left) and
Internet Explorer (right).

as the difference may as well be due to sole chance. In general, we find that
a log-normal distribution does not perform significantly better than a Power
Law in describing our data. For WINDOWS vulnerabilities the evidence is more
markedly toward the log-normal distribution, but the difference is again not
significant. The case for PLUGIN is, unsurprisingly, sharply in favor of a log-
normal distribution. With the exception of PLUGIN, none of the alternative
hypothesis in Table 4 provides a better explanation to the data than a Power
Law distribution does.

We now narrow down the data analysis to single instances of ‘representative’
software in each category. We however do not report any more data-fitting results
as the fewer and fewer data points would make their interpretation a particularly
tricky one.

6.1 Breakdown by software

Figure 3 reports the distribution of exploitation volume for vulnerabilities af-
fecting Microsoft Office (PROD) and Internet Explorer (BROWSER). For these
two software, the log-log plot shows a good linear fit along the data points. The
numerical results are equivalent to those reported for the respective macro cate-
gories. Software in WINDOWS, not reported here for brevity, also confirms the
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Fig. 4. Log-log plot of volume of exploits in the wild for Java vulnerabilities disclosed
before 31-Dec-2009 (left) and after 1-Jan-2010 (rigth).

general result. For PLUGIN software, the Power Law fitting is always very low
regardless of the considered software. To further investigate this, in Figure 4 we
report the distribution for Java vulnerabilities grouped by year of disclosure.
The different distribution in attacks for vulnerabilities disclosed before and after
2009 is immediate to see. While for 2009 the Power Law model is clearly a bad
fit, for Java vulnerabilities disclosed after 2010 it is supported by the evidence
(p = 0.76). Neither the log-normal nor the exponential distribution provide a
better model for the data. A possible explanation to this temporal effect is that
software running in background (such as PLUGIN software generally is) may be
seldom updated by users [30]. This may have an influence on the exploitation
volumes recorded: looking at the Java case, 2009 is the last year Java was owned
by Sun Microsystems, before being acquired by Oracle. This may suggest that
pre-2009 vulnerabilities for Sun Microsystem’s Java accumulated high exploita-
tion volumes possibly because of users’ latency in switching to Orcale’s Java.
For Java vulnerabilities disclosed after 2010 our results are equivalent to those
we obtained for the other categories. This suggests that the heavy-tail effect we
observe is present regardless of the software type.

7 Discussion

In this paper we presented evidence that vulnerability exploitation follows a
heavy-tailed distribution.

The heavy-tail effect we find is (qualitatively) similar to that shown by the
80-20 Pareto law of income distribution: the majority of the impact is caused
by a small fraction of the population. We showed that, depending on the type of
software affected by the vulnerability, as low as 10% of the vulnerabilities may be
responsible for more than 90% of the attacks in the wild against that software.
The most extreme result is obtained for PROD vulnerabilities, for which 5% of
vulnerabilities account for 95% of the attacks.

This observation alone could have significant impact on the way security
quantification and prioritization is done. Vulnerabilities represent a significant
source of uncertainty when managing infrastructural and system security. Clearly



all vulnerabilities represent a potential risk, but it is effectively unclear how
much risk is attached to a software flaw. Many regulatory and administrative
initiatives try to give an estimate of this by suggesting simple rules to prioritize
vulnerability treatment. Notable examples of this are the NIST SCAP protocol
[25] and guidance provided by the PCI DSS standard for credit card security [10]:
a high risk score vulnerability is considered on average dangerous enough to need
immediate treatment. This approach has already been questioned in literature
[4], and our results point in the same direction: point estimates of vulnerability
risk may be widely inappropriate in practice.

7.1 An explanation attempt: the Law of the Work-Averse Attacker

We make an attempt at giving an explanation to the possible mechanisms that
underlie the heavy-tail effect shown in this paper. We label this the “Law of the
Work-Averse Attacker”, according to which the average attacker is not interested
in procuring and using new reliable exploits if he or she already owns one. The
rationale behind this is that once the attacker can attack n systems with one
exploit, as long as n is high enough a new reliable (and possibly expensive [2, 5])
exploit would not increase n enough to justify the cost (economic or in terms of
effort) of deploying a new attack. The effect of this is that attackers focus their
efforts in attacking a limited set of vulnerabilities for which reliable exploits exist
and are available (for example in the black markets [5]). As a consequence, only
a handful of vulnerabilities are consistently attacked over time, and this may
generate the heavy-tailed effect shown in this paper. In general,

∃v0,t0 , n : P (v0, t0, n) ≈ 1→ ∀vi 6= v0 P (vi, t0, n) ≈ 0 (2)

where P (v, t, n) is the probability that an attack against the vulnerability v is
successful at time t0 against n systems, with n >> 1.

If this holds, by looking at exploitation trends in time we would expect that:

Hypothesis 2 Exploits alternate in ‘popularity’, i.e. a new one appears only
when an old one decays.

Hypothesis 3 No two exploits are at the same level of exploitation at the same
moment.

In Figure 5 we report as an example the trends of exploitation of vulner-
abilities disclosed in 2010 for Internet Explorer and QuickTime. We plot on a
logarithmic scale the volume of attacks against each vulnerability, represented
by a distinct line. A simple illustrative example is that of Quicktime, for which it
is visible how the emergence of the second exploit follows a sharp decline in the
popularity of the already-present one. This same effect can also be found in the
more complex scenario of Internet Explorer: in 2010 we have three main exploits
(a fourth is collapsed several orders of magnitude below the others). Let’s call
them A (full line, dots), B (dashed lined, squares) and C (short dashes, crosses).
We note that:
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Fig. 5. Trends in attacks for vulnerabilities disclosed in 2010 for QuickTime and In-
ternet Explorer.

– when A falls, B rises
– after a sharp decline in B, C rises
– when B goes up again C falls and A disappears
– when B finally dies, first C rises and then A (since then dead) rises up again

We therefore find supporting evidence for Hyp 2. We find Hyp 3 to be sup-
ported as well as in both cases one exploit dominates all the others at least by
one order of magnitude. We keep a more precise and formal characterization of
this model for future research.

8 Related Work

Shahzad et al. [28] have recently presented a general overview of software vulner-
abilities. Many descriptive trends in timings of vulnerability patching and release
of proof-of-concept exploits are presented. Frei et al. [12] showed that exploits are
often quicker to arrive than patches are. An analysis of the same flavour is pro-
vided by [27] and [7]. Other studies focused on the modeling of the vulnerability



discovery processes. Reference works in this area are [1] and [23]. Current vul-
nerability discovery models are however not general enough to represent trends
for all software [21]. Moreover, vulnerability disclosure and discovery are com-
plex processes [7, 22], and can be influenced by {black/white}-hat community
activities [7] and economics [17]. The different risk levels coming from different
vulnerability types and exploit sources is outlined in [4]. Our study, rather than
presenting an overview of vulnerabilities, exploits and patches releases, focuses
on volumes of exploitation attempts in the wild.

By analysing attack data in WINE Nayak et al. [19] concluded that attackers
focus on few vulnerabilities only and that, as a consequence, risk measurements
based solely on knowledge of vulnerability may be inaccurate. Holm [15] analyses
attack data on the systems of an organisation and fits it to several models. His
analysis concerns the time of arrival of malware alerts. His results are on the same
lines as ours: a log-normal distribution and a Pareto distribution are usually a
better fit to the data than other models. Differently from [15], we focus on
the volume of vulnerability exploitation attempts rather than on the timings of
malware detection.

Bilge and Dumitras [6] provide an analysis of 0-day exploits by analysing in
hindsight historical records of attacks in WINE. Provos et al. [24] also provide
a quantitative estimation of cyber-attacks by analysing iFrame traffic; they find
that about 60% of the threats against the final user are web attacks. An analysis
of the mechanisms responsible for the generation of these attacks can be found
in [14], that uncovers the Exploit-as-a-Service architecture for cyberattacks used
by cybercriminals. Following this line of research, an estimation of the fraction
of attacks generated by cybercrime market activities is given in [5]. An in-depth,
empirical analysis of the tools used by cybercriminals to deliver their attacks
is given in [16] and [2]. Rather than focusing on the general volume of attacks
affecting the final user, in this work we evaluate how vulnerability exploitation
is distributed in the wild.

9 Conclusions

In this paper we analysed the frequency with which vulnerabilities are exploited
in the wild. Our findings clearly show that the distribution of attacks follows
a heavily tail distribution, showing that a small fraction of vulnerabilities is
responsible for the great majority of attacks against a software.

We hypothesise that this distribution may follow a Power Law, but this hy-
pothesis is only inconclusively supported by our evidence: an alternative, equally
good explanation to the data may be provided by a log-normal distribution. The
statistical power needed to accept one or the other hypothesis is reduced by the
relatively low number of vulnerabilities present in our dataset which nonetheless
represents, at the best of our knowledge, the most comprehensive collection of
attacks in the wild publicly available at the moment of writing.

To further explain our results we present the Law of the Work-Averse At-
tacker, according to which attackers only select one vulnerability to exploit at



a time, per software. This results in a distribution of attacks whereby only one
vulnerability out of many represent a relevant risk for the user. This model is
qualitatively supported by the evidence we find by analysing two case scenarios
for Apple Quicktime and Microsoft Internet Explorer. We leave a more formal
analysis of this model to future work.
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